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Abstract A detailed comparative study of the heat transfer augmentation of in-tube flows
accounting for an array of equally-spaced plate fins attached at the outer surface is undertaken.
The aim of the paper is to critically examine the thermal response of this kind of finned tubes to
three different mathematical models: a complete 3-D distributed model, a reduced 2-D
distributed/lumped hybrid model and two largely simplified 1-D lumped models. For the three
models tested, the computed results consistently demonstrate that the simplest 1-D lumped model,
with embedded arithmetic spatial- and geometric spatial-means of the angular external convective
coefficients provide dependable algebraic estimates of the actual heat transfer provided by the 3-D
distributed model with its indispensable finite-difference solution. Further, an arithmetic mean of
the maximum and minimum heat transfer supplied by the 1-D lumped model delivered results
that match those computed with the 3-D distributed model. The most important steps of the
mathematical derivations have been highlighted. A representative group of thermal performance
diagrams is explained with the intent to assist engineers engaged in the thermal design of
externally finned tubes of compact heat exchangers and HVAC devices.

Nomenclature
Bi(�) = local Biot number, Rhe(�)/ki

Bi = angular-mean of Bi(�)
cp = specific isobaric heat capacity
D = tube diameter
g = acceleration of gravity
he(�) = local external convective coefficient
he = angular-mean of he(�)
hi = local internal convective coefficient

hi = axial-mean of hi

k = thermal conductivity

L = length of heat exchange region

L0 = dimensionless L for laminar flow, L/
RReiPri

L00 = dimensionless L for turbulent flow,
L/R

_m = mass flow rate
N = number of equally-spaced plate fins
Nue = local external Nusselt number, heD/

ke

Nue = angular-mean of Nue

Nui = local internal Nusselt number, hiD/ki

Nui = axial-mean of Nui
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Introduction
The primary consideration associated with the design of heat exchanger tubes
is the maximum rate at which heat transfer can be intensified actively or
passively. Augmentation of forced convection heat transfer in tube flows may
be achieved passively by fitting a uniformly-spaced array of radial or plate fins
to the outer surface of circular tubes (see Bergles (1998) and Webb (1994)).

Because the external gas-side heat transfer coefficient is typically much
smaller than the internal tube-side heat transfer coefficient, it is important to
increase the gas-side Ahe product. A primary surface geometry will increase
the gas-side Ahe product by simply increasing the area A. Since the gas-side
heat transfer coefficient may be 5 to 20 per cent that of the tube-side heat
transfer coefficient the use of closely spaced high fins is desirable. Fins for
liquids normally use lower heights than that used for gases because liquids
have higher heat transfer coefficients than gases.

From a fundamental standpoint, the problem on internal forced convection
in externally finned tubes (annular and plate fins) is classified as a 2-D or a 3-D
thermal entrance problem depending on the layout of the bundle of fins.
Invariably, the local external convective coefficient, varies periodically along
the tube for a layout of annular fins or along the periphery of the tube for a
layout of axial plate fins. Consequently, both problems are subjected to a
thermal boundary condition of third kind at the tube wall.

Nueq = local equivalent Nusselt number,
UD/ki

Nueq = axial-mean of Nueq

p = height of plate fin
Pr = Prandtl number, �cp/k
Qt = total heat transfer
Qmax = maximum heat transfer
r = radial coordinate
R = tube radius
Rae,o = modified Rayleigh number,

(g�e/�
2
e )(To ± T1)D3�Pre

Rae,w = local Rayleigh number,
(g�e/�

2
e )(Tw ± T1)D3�Pre

Ree = external Reynolds number,
�u1De/�e

Rei = internal Reynolds number, 4 _m=�D�i

t = thickness of plate fin
T = temperature
<T> = angular mean of T
U = local, overall heat transfer coefficient
U = axial-mean of U
w = axial velocity
w = radial mean of w
x = coordinate along the circumference

of the tube

X = dimensionless x
z = axial coordinate
Z = dimensionless z for laminar flow,

z/RReiPri

Greek symbols
� = coefficient of thermal expansion
� = dimensionless r
� = angular coordinate
� = dynamic viscosity
� = kinematic viscosity
� = density
� = dimensionless T

t = dimensionless Qt

Subscripts

b = mean bulk
e = external fluid
i = internal fluid
f = finned segment
o = entrance
s = solid
u = unfinned segment
1 = ambient
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An analysis was carried out by Sparrow and Charmchi (1980) for the case of
fully developed laminar flow in externally finned tubes having a regularly-
spaced array of annular fins or square plates affixed to the outside surface of
the tube. Finned tubes of this type abound in residential and institutional space
heating systems. These authors formulated the thermal entrance problem with
a 2-D distributed model that was controlled by a dominant thermal boundary
condition in which the external heat transfer coefficient, he(z), varied
periodically along the flow direction. The periodic variation of he(z) was
idealized as a succession of high and low values, hf and hu, capable of modeling
the successive finned and unfinned portions of the tube, zf and zu, respectively.
An implicit finite-volume procedure was implemented to solve the
dimensionless energy equation with a Poiseuillean velocity and a prescribed
periodic boundary condition in terms of Bi. The computational task required to
obtain the numerical solutions were especially demanding because of the
abrupt periodic changes in Bi. The grid consisted of 220 points in the radial
direction with a greater concentration of points near the tube wall. For the axial
direction the uniform step sizes were of the order of 10±5 or 10±6 depending on
the parameters, so that the number of points in the axial direction ranged from
50,000 to 95,000. Despite the fact that Schmidt (1963) and Legkiy et al. (1974)
have reported experimental data for the external convection coefficients which
could have been used as valuable input in Sparrow and Charmchi (1980),
theoretical values were assigned to hf and hu (hf >> hu) and to zf and zu (zf <<
zu) in order to perform the numerical computations. With a view to finding a
means to avoiding the lengthy computer intensive calculations for the periodic
Biot numbers, an arithmetic-spatial-mean Biot number intended to
approximate the heat transfer characteristics for the true periodic Biot number
was proposed in Sparrow and Charmchi (1980). Certainly, this alternate
approach provided adequate upper bounds for the actual mean bulk
temperature distributions at low Biot numbers. Inexplicably, other spatial-
mean Biot numbers, like the geometric-spatial-mean and the harmonic-spatial-
mean Biot numbers that are linked to the equally important lower bounds for
the actual mean bulk temperature distributions were not examined in this
publication.

Moukalled et al. (1992) literally extended the work of Sparrow and Charmchi
(1980) for the situation pertinent to turbulent flow employing the simple mixing
length model. Likewise, these authors utilized an arithmetic-spatial-mean Biot
number only to approximate the heat transfer characteristics for the true
periodic Biot number of the fins, and no other spatial-mean Biot number was
attempted.

From the perspective of engineering practice, Webb (1994) has stated that
operational constraints, such as the gas-side fouling, may limit the annular fin
density in externally finned tubes, like the arrays used in Sparrow and
Charmchi (1980) and Moukalled et al. (1992). For instance, HVAC applications
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employ 500-800 fins/meter, process air coolers are usually limited to 400 fins/
meter, and applications involving dirty-soot-laden gases are restricted to 200
fins/meter.

The present paper addresses the other possible fin configuration that is
connected to tubes covered with an array of axial plate fins. In contrast to the
two-dimensional thermal entrance problem tackled in Sparrow and Charmchi
(1980) and Moukalled et al. (1992), the nature of the present problem is indeed
three-dimensional. It appears that the latter has not heretofore been addressed
so far in the heat transfer literature. For each fin configuration, a minimum of
four independent parameters need to be specified, namely: the `̀ effective''
convective coefficient for the finned segment, hf, the fin thickness, xf, the
convective coefficient of the unfinned segment, hu, and the interfin spacing, xu,
respectively.

In the absence of a viable analytical solution, a finite-volume technique has
been employed. The numerical solutions are carried out through the entire
thermal entrance region and were terminated when thermally developed
conditions were attained. Further, to complement and provide perspective to
the complete 3-D numerical results (the baseline solution), degraded 2-D and
even a crude 1-D models relying on the ableness of a constant �he (invariant
with the angular coordinate, �) were explored also. Clearly, adoption of a
constant �he necessitates a careful implementation of various spatial-means of
the local, external convective coefficient, he(�) within the framework of
statistical analysis. In this regard, it should be added that the heat transfer
literature relative to the applications of statistical aspects of spatial-means for
the estimation of asymmetrical external convective coefficients arising in
forced convection tube flows with bundles of fins is scarce. Therefore, an
investigation focusing on the testing, validation and limitations of various
spatial-means of he(�) is necessary for purposes of exploring potential
simplifications for the thermal design of externally finned tubes that are used
in heat exchange devices. Correspondingly, the intent of this study is two-fold:
first, to simulate realistically the heat transfer phenomenon itself with a
complete 3-D distributed model; and second, to assess the relative importance
of statistically-determined bounds utilizing two dependable lower-order
models, such as a 2-D distributed/lumped hybrid model and a full 1-D lumped
model.

In sum, the outcome of this comparative study may be relevant to:

. the general understanding of heat transfer behavior of flows inside
externally finned tubes;

. the actual thermal design of finned tubes arising in heat exchange
devices; and

. interactive engineering education in courses on design of thermal
systems.
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For the theoretical distributions of the axial-mean Nusselt numbers which are
required for the models,see Appendix A.

Physical situation
It is well known that the addition of plate fins of thickness t and height p to the
outer surface of circular tubes can be justified if the fin effectiveness ratio (ht/
ks)

1/2 << 1 (see Mills, 1992). Under these premises, the inequality suggests the
use of plate fins made from highly conducting metals for the natural convection
heat removal to a gaseous medium such as air. Figure 1 depicts a circular tube
fitted with an array of equally-spaced, external plate fins, together with the
patented angular variation of the local external convective coefficient, he(�),
along the periphery of the tube.

The degree of heat transfer augmentation is sensitive to the number of
equally-spaced fins in the array, N; the fin thickness, xf; the `̀ effective''
convective coefficient for the finned segment, hf, the unfinned segment, xu, the
convective coefficient of the unfinned segment, hu; respectively. The thermal
quantity of paramount importance for engineers involved in the design of
finned tubes is the total heat removal, Qt, that happen in a certain tube length,
L. The heat losses from the internal fluid flow to the external air at a uniform

Figure 1.
(a) Sketch of the
externally finned tube
and (b) the angular
variation of the local
external convective
coefficient
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temperature, T1, occur through a sequence of unfinned and finned portions
along the periphery of the tube. Jakob (1949) has advocated for the calculation
of Qt by way of a global energy balance between the inlet, z = 0, and a desired
downstream station, z = L:

Qt � rh cp;i�To � Tb�L�� �1�

Here, the mean bulk temperature, Tb, for incompressible viscous flows is
computed from

Tb�z� � 2

R2um

Z R

0

u�r�T�z; r� rdr �2�

where the specific heat capacity, cp, has been assumed constant or averaged
over the actual temperature interval of operation. Therefore, knowledge of Tb

at any downstream station, L, is synonymous with the total heat transfer, Qt,
up to that station. This thermodynamic procedure avoids the calculation of an
additional thermal quantity, the local distribution of the finned-tube Nusselt
number Nuz, which among other things, depends on the geometric and thermal
characteristics of the fin array as well as the type of cooling.

First, attention has been confined to laminar motion. The velocity and
temperature of an internal viscous fluid develop simultaneously from their
respective uniform values, wo and To, at the inlet of a heat exchange section, z
= 0. According to Kays and Crawford (1993), this general situation for water,
oil and other high-Prandtl number fluids (Pr � 5) can be modeled by a limiting
situation in which the velocity is taken as fully developed and the temperature
is developing.

Irrespective of the mathematical model adopted, the problem under study
here is described by three dimensionless variables

� � T ÿ T0

T1 ÿ T0
; Z � z

R Rei Pri

; � � r

R
�3�

and four dimensionless parameters

N ; Xf � t

D
; Biu � Rhu

ki
; Bif � Rhf

ki
�4�

because N, Xf and Xu are interrelated through the tube perimeter.

3-D distributed model
Variable external convective coefficient: he(�)
Under the idealization that the properties of the internal fluid (water, oil or
other high Pr fluid) are unaffected by temperature and ignoring heat
conduction in the thin tube wall, the applicable 3-D energy conservation
equation is given by
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�1ÿ �2�@�

@Z
� 1

�

@

@�
�
@�

@�

� �
� 1

�2

@2�

@�2
�5�

The imposed boundary conditions are written as

� � 0; Z � 0 �6�

@�

@�
� 0; � � 0 �7�

ÿ @�

@�
� Bif ��ÿ 1�; � � 1; 0 < � < �f �8a�

ÿ @�

@�
� Biu��ÿ 1�; � � 1; �f < � < � �8b�

@�

@�
� 0; � � 0; 2�; all � �9; 10�

The preceding equations (5)-(10) have been solved numerically by the finite
volume method of Patankar (1980), in which the physical domain was divided
into contiguous curvilinear control volumes. Exploiting symmetry, the
computational domain was reduced to a pie-shaped modulus, where the
inequality 0 � � � � � �=N is susceptible to the number of fins, N. Of course,
extra boundary conditions of lesser importance are needed at the symmetry
lines, but they are omitted for brevity.

The resulting system of algebraic equations was solved by the line-by-line
procedure of the tri-diagonal-matrix-algorithm (TDMA). The block correction
algorithm suggested by Settari and Aziz (1973) was incorporated to enhance
the convergence rates. Various nonuniform grids were constructed in the �� �
computational domain where the grid lines were closely packed near the wall
and also near the location of the fins. In addition, nonuniform axial steps �Z
were smaller near the entrance (Z = 0), increasing in size gradually towards the
less demanding downstream region. A sensitivity analysis of the grid reflected
that a 22 � 36 nonuniform grid provided reasonable mean bulk temperature
distributions (a global quantity) that were grid independent. For the limiting
case (N = 0, Biu = Bif = 1,000), acceptable mean bulk temperature distributions
have been obtained when compared with those accurately computed by Shah
and London (1978) by exact techniques. An overall examination of the
computations indicated that the results for the Nusselt number distribution are
accurate to at least 0.1 percent.
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2-D distributed/lumped hybrid model
Angular-mean external convective coefficient: �he

To simplify the 3-D distributed model and its unavoidable numerical
calculations a lower order hybrid model inspired in a radially-distributed
angularly-lumped structure could be sought. In principle, this simpler route, if
successful, may relax the 3-D energy equation and more importantly simplify
the convective boundary condition at the wall, Equations (8a) and (8b),
markedly. This issue is analogous to the replacement of a periodic variation of
Bi(�) with some sort of a spatial-mean Biot number, �B�i, which is angular-
independent.

Multiplying Equation (5) by �2d� and later integrating between the limits 0
and 2� givesZ 2x

0

�2�1ÿ �2� @�

@Z
d� �

Z 2x

0

�
@

@�
�
@�

@�

� �
d��

Z 2x

0

@
@�

@�

� �
�11�

In accordance with Leibniz rule (see Courant and Hilbert, 1953), the LHS and
the first term of the RHS of Equation (11) are reordered to permit the derivative
to occur before the integration. Because the upper and lower limits of the
integrals are numbers, this operation yields

�2�1ÿ �2� @
@Z

Z 2x

0

�d� � � @
@�

�
@

@�

Z 2x

0

�d�

� �
�
Z 2x

0

@
@�

@�

� �
�12�

Owing to the definition of the angular mean temperature

h�i � 1

2�

Z 2x

0

�d� �13�

Equation (12) may be converted into

�2�1ÿ �2� @h�i
@Z

2� � � @
@�

�
@h�i
@�

� �
2�� @�

@�

� �
��2x

ÿ @�

@�

� �
��0

�14�

Introduction of the angular boundary conditions of Equations (9) and (10)
nullifies the second and third terms of the RHS of Equation (14) immediately.
The end result is the 2-D energy equation

�1ÿ �2�@h�i
@Z
� 1

�

@

@�
�
@h�i
@�

� �
�15�

where the dependent variable is <UÂ >. Now, in conformity with the two
dimensionality of Equation (15) the discontinuous boundary conditions of
Equations (8a) and (8b) need to be substituted by an equivalent boundary
condition of third kind of continuous form written in terms of <UÂ >. This action
may be achieved by proposing a spatial-mean Biot number, Bi, which fusions
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Equations (8a) and (8b) into the following

ÿ@h�i
@�
� Bi�h�i ÿ 1�; � � 1 �16�

The form of this equation stipulates a common boundary condition which
controls the heat liberation through consecutive finned and unfinned segments
around the tube. In this regard, three candidate spatial means for the Biot
numbers are listed in Appendix B.

Equation (15), subjected to Equations (6), (7) (replacing UÂ by <UÂ >) and (16)
has also been solved numerically by the finite volume method employing a
variant of the computer program used for the 3-D distributed model. At this
point, it is worth mentioning that Hsu (1971) solved the 2-D problem
numerically and presented some asymptotic expressions for the eigenvalues
and the coefficients. Also, Ozisik and Sadeghipour (1982) implemented the
matched asymptotic expansion technique and presented highly accurate
asymptotic expressions for the determination of the eigenvalues and the
coefficients needed for the evaluation of the infinite series for the local Nusselt
number. Both expressions for the eigenvalues and the coefficients, valid over
the entire range of Biot number (0 � Bi � 100), turn out to be extremely intricate
for purposes of numerical evaluation. Alternatively, to alleviate these arduous
evaluations tabulated the first 12 eigenvalues and coefficients for a selected
number of Bi = 0, 0.1, 1, 10 and 100 were presented in Hsu (1971) and Ozisit and
Sadeghipour (1982)..

For a more general situation formed by simultaneous development of
laminar velocity and temperature, no exact analytic seems to be possible.
Owing to this, McKillop et al. (1971) resorted to the finite-difference method,
whereas Javeri (1976) employed the Galerkin-Kantorovich variational method.
A collection of numerical results were presented graphically for the generalized
in-tube Nusselt number changing with two parameters: the Prandtl number
and the Biot number.

1-D lumped models
a) Variable internal convective coefficient: hi(z)
The objective of this subsection is to transform the 2-D distributed/lumped
hybrid model, Equation (15), along with the radial boundary conditions,
Equations (7) and (16), into a simpler 1-D lumped model.

First, the concept of the mean-bulk temperature in Equation (2)
particularized to laminar motion, corresponds to

h�ib�Z� �
RWh�idA

�RWdA

�

� 4

Z 1

0

h�i�1ÿ �2�� �17�

Multiplying Equation (15) by gdg and integrating between the proper limits of
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zero and one, leads to the equalityZ 1

0

�1ÿ �2��@h�i
@Z

d� �
Z 1

0

@

@�
�
@h�i
@�

� �
d� �18�

Here again, invoking Leibniz rule (Courant and Hilbert, 1953), the left hand side
of this equation is reordered to permit the derivative to occur first. Hence, the
end result is

4
@

@Z

Z 1

0

h�i�1ÿ �2� � d�

� �
� 4

Z 1

0

@

@�
�
@h�i
@�

� �
d� �19�

because the upper and lower limits of the integral are numbers. It may be
realized in the LHS of Equation (19) that four multiplied by the term to be
differentiated inside the parenthesis is precisely the definition of the
dimensionless mean-bulk temperature in Equation (17). Thereby, integration of
the RHS of Equation (19) can be completed immediately, giving

@h�ib
@Z

� 4 �
@h�i
@�

� �
��1

ÿ4 �
@h�i
@�

� �
��0

�20�

Now, making use of the two radial boundary conditions, Equations (7)
(rewritten in terms of <UÂ >) and (16), Equation (20) becomes

dh�ib
dZ
ÿ 4 Bi �1ÿ < � >wall� �21�

Unequivocally, the preceding relation necessitates further input from the
physics of the problem. It is evident that relevant information about radial heat
conduction embedded in the first and second order radial derivatives of
Equation (15) has been lost in the process of degrading the 3-D energy equation
into a 2-D energy equation. Because the integration in Equation (15) has been
performed over the radial coordinate, g, then both the dimensionless mean bulk
temperature, <UÂ >b, and the dimensionless surface temperature, <UÂ >wall, in
Equation (21) depend solely on the dimensionless axial coordinate, Z.
Consequently, to carry out the integration in Equation (21) a relationship
between <UÂ >b and <UÂ >wall, must be established.

For thin-walled tubes, the local, overall heat transfer coefficient, U(z), is
basically a harmonic mean of the local internal convective coefficient, hi(z) and
the angular-mean external convective coefficient, he,

1

U�z� �
1

Hi�z� �
1
�he

�22�

To comply with Thermodynamics, it is mandatory that the functions hi (z) and
�he in Equation (22) be associated with an isothermal wall temperature, Tw. For
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the former, Churchill and Ozoe (1973) have recommended the correlation
equation (A-1) for Nui (Z), and for the latter, a group of appropriate spatial-
mean Biot numbers, Bi, has been listed in Appendix B. Actually, Nui (Z)
exhibits a monotonic decreasing variation with the axial coordinate Z, and
renders a position-dependent Nueq (Z). On the other hand, Bi, is position-
independent.

To remedy for the above deficiency, �he(<T>w ±TsÏ) needs to be replaced by
its generalized form �U(<T>b ± TsÏ). The dimensionless equivalence of this step
is analogous to the substitution of 2Bi<UÂ >wall) by Nueq(Z)<UÂ >b) in Equation
(21) where the Nueq(Z) is defined by

1

Nueq�Z� �
1

Nui�Z� �
1

2Bi
�23�

The explanation in the preceding paragraph insures that the lumped energy
equation (16) can be reformulated as an ordinary differential equation of first
order as follows

dh�ib
dZ

� 2�Nueq�Z�� �1ÿ h�ib�; h�ib�0� � 1 �24�

Evidently, the highly nonseparable character of Equation (24) necessitates the
use of a numerical integration scheme, such as the fourth-order Runge-Kutta
algorithm. Certainly, these marching calculations have to be carried out on a
personal computer.

b) Axial-mean internal convective coefficient: �hi.
A further simplification of the 1-D lumped model has been pursued here. The
distribution of the local Nusselt number, Nui (Z) may be integrated between Z =
0 and Z = L0 to furnish the axial-mean distribution Nui(L

0):

Nui�L0� � 1

L0

Z L0

o

Nui�Z�dZ �25�

This step leads to an axial-mean equivalent Nusselt number, Nueq(L0)
1

Nueq�L0�
� 1

Nui�L0�
� 1

2Bi
�26�

where L0 = L/RReiPri denotes a predetermined dimensionless axial station. In
Equation (26), Nui(L

0) may be computed from the compact correlation equation
(A-2) due to Hausen (1943). Additionally, the set of appropriate spatial-mean
Biot number, Bi may be found in the Appendix B. At this point, noticing that
Nueq is simply a number the ordinary differential equation of first order,
Equation (24), transforms into
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dh�ib
dZ

� 2�Nueq�L0�� �1ÿ h�ib�; h�ib�0� � 1 �27�

The analytical solution of this separable equation is readily given by

h�ib�L0� � 1ÿ expf�ÿ2Nueq�L0�� � L0g �28�

Suffices to say that the numerical evaluation of Equation (28) is
straightforward.

Validation of the 1-D lumped model is mandatory and this issue have been
addressed in this sub-section. Consideration is given to an extreme condition
accounting for a laminar flow in a tube which is subjected to a vigorous heat
rejection caused by a normal forced convection flow of external air. For a
limiting condition involving a very large external convective coefficient, �he ± > sÏ,
the external convective resistance vanishes in Equation (26). This extreme
cooling is manifested by the presence of a dominant resistance, i.e., the internal
convective resistance ensuring the simplification of Nueq into Nui in Equation
(26). On introducing Nui into Equation (28) the dimensionless mean bulk
temperatures, <UÂ >b, linked to a limiting isothermal wall condition should be
recovered. As a corollary of this, the dimensionless wall temperature, <UÂ >b

tends to zero. The set of <UÂ >b predictions supplied by the algebraic solution of
the 1-D lumped model compared perfectly with the benchmark <UÂ >b results of
the 2-D distributed model with an analytic solution. The latter solution is taken
from Table 13 in Shah and London (1978).

In sum, it is important to realize that the first 1-D lumped model, based on a
function Nueq (Z) required numerical integration with a Runge-Kutta algorithm.
In contrast, the second 1-D lumped model is controlled by merely a number
Nueq and the evaluations can be carried out with a calculator. The latter lumped
model seems to have an aggregate advantage over the former lumped model
because by virtue of Equation (1) an analytical correlation equation for the
dimensionless total heat transfer, oÄt, may be constructed immediately. That is:


t � 1ÿ expf�ÿ2Nueq�L0�� � L0g �29�
At this point, a comment about the modeling of internal turbulent flows is in
order. In general, the internal thermal resistance for turbulent flows in
externally finned tubes is substantially smaller than that of laminar flows.
Therefore, under comparable conditions, the external resistance will play a
more decisive role in the former than in the latter. On this basis, it may be
expected that external finning will be more effective for turbulent tube flows
than for laminar tube flows. The excellent quality of the results for laminar
flows lent credibility to the 1-D lumped model with its algebraic solution so that
the idea can be extended to turbulent flows without hesitation. Under these
circumstances, Nui(L

00) may be computed from the compact correlation
equation (A-4) suggested by Stein (1988).
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Discussion of results
Owing to an abundance of geometric and thermal parameters, severed by
journal space limitations, a full parametric exploration seems to be unrealistic
and only representative results have been given here for two selected arrays of
plate fins. One array is sparse consisting of N = 4 fins, while the other is dense
made of N = 16 fins. Moreover, the same fixed values of the prescribable
dimensionless parameters Xf = 0.05, Bif = 50 and Biu = 1 used in Sparrow and
Charmchi (1980) and Moukalled et al. (1992) have been chosen throughout the
present calculations. For each array, the size of the unfinned segment, Xu, is
determined from the peripheral relation D = N�Xf + N�Xu. Besides, the values of
the spatial-mean Biot numbers, Bia, Big, and Bih, are evaluated from the
formulas (B-1)-(B-3) listed in Table I.

Introducing a dimensionless heat transfer (or heat transfer efficiency), kt,
converts Equation (1) into


t � Qt

Qmax
� Qt

rh cp;i �T0 ÿ T1� � h�ib�L
0� �30�

in which UÂ b(L0) is the mean bulk temperature at a position, L0, both
dimensionless quantities. Therefore, this equality implies that knowledge of UÂ b

at any predetermined downstream station, L0, is synonymous with the total
heat transfer, Qt, up to that station. In passing, it should be mentioned that the
thermodynamic procedure avoids the calculation of an additional thermal
quantity, the local finned-tube Nusselt number Nuz, which among other things
depends on the characteristics of the fin array and the type of cooling.

For purposes of comparison, the mean bulk temperatures, UÂ b (or their
equivalent total heat transfer rates, oÄt), supplied by the complete, 3-D
distributed model owing to an angular variation of the Biot number, Bi(h), have
been regarded as the baseline solution. Accordingly, the exact numbers for oÄt

are plotted with a solid line in Figures 2 and 3 for N = 4 and a four-fold
increment in the number of fins, N = 16. As may be anticipated, under
comparable circumstances and identical values of Xf, Xu, Bif, and Biu, the total
heat removal, oÄt, in a tube of finite length L0 varies proportionally with the
number of fins N in the array.

Without loss of generality, we should expect that the curves for the total heat
transfer, oÄt, based on the 3-D model, must lie between those curves plotted with
the approximate 2-D and 1-D total heat transfer calculated with the appropriate
spatial means of the Biot number. The format adopted in each family of curves

Table I.
Geometric and thermal
characteristics of two
fin arrays

N Xf Bif Xu Biu Bia Big Bih

4 0.05 50 0.735 1 4.12 1.28 1.07
16 0.05 50 0.146 1 13.50 2.71 1.33
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is as follows: the upper curve is associated with the arithmetic spatial mean,
Bia, the middle curve represents the harmonic weighted-spatial mean, Big, and
the lower curve pertains to the geometric spatial mean of Bi, Bih.

Aside from the fact that Bia constitutes a strong upper bound, able to
estimate the maximum heat liberation of the externally finned tube, say oÄt,max,
a question that needs to be addressed is whether Big or Bih provide a strong or a
weak lower bound. Undoubtedly, one of the two will be able to estimate the
minimum heat liberation of the externally, finned tube, oÄt,min, in a better way.

Figure 2.
Axial variation of the

total heat transfer for N
= 4 computed with the

3-D, 2-D and 1-D models

Figure 3.
Axial variation of the

total heat transfer for N
= 16 computed with the
3-D, 2-D and 1-D models
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The heat transfer results supplied by the 2-D model involving the harmonic-
spatial-mean, Bih, are not plotted in the figures in order to preserve clarity. The
rationale behind this decision is that, when compared with the real heat
transfer based on the 3-D model, the oÄt-curves for Bih consistently fell below
those for the geometric-spatial-mean, Big (in conformity with the inequalities
(B-4)). This behavior suggested that Bih was a weaker lower bound and because
of this attribute can be discarded. In contrast, Big, being a stronger lower
bound, was indeed a better statistical estimate. This sequential pattern is in
perfect accordance with the inequalities (B-4) derived from statistical analysis.

Comparison between the total heat transfer delivered by the 2-D and the 1-D
lumped models
To facilitate the comparison between the 2-D and 1-D models in Figures 2 and
3, the total heat transfer based on Bia are portrayed by circles, while those for
Big are illustrated by triangles. The curves that are situated in the upper part of
each figure were generated with the 1-D lumped model involving an arithmetic
spatial-mean, Bia, whereas those in the lower part of the figures are linked to
the 1-D lumped model involving a geometric spatial-mean, Big. For all the fin
arrays examined (4 � N � 16), the oÄt-curves connected to the 1-D lumped model
fall directly on top of the oÄt-curves related to the 2-D distributed/lumped hybrid
model with the same means. This concordance is a strong affirmation of the
forgiving nature of the angular dependency of the external convective
coefficients, he(h), in favor of the selected spatial means. It turns out that the
he(h)-variation is conveniently embedded into the two reliable spatial means, �ha

and �hg, respectively in the 2-D distributed/lumped hybrid model as well as in
the 1-D lumped model. Therefore, in view of this systematic overlapping of the
curves, attention has been focused on the one-to-one comparison between the 3-
D distributed and the 1-D lumped models in the following sub-section.

Comparison between the total heat transfer furnished by the 3-D and the 1-D
lumped models
First, the heat transfer, oÄt, computed with the 3-D model and its variable
external convective coefficient, he(h), has been compared against the
approximate heat transfer supplied by the 1-D model based on the two
candidate spatial means, Bia and Big, in Figures 4 and 5. Here, it may be
observed that for a sparse array, N = 4, the two types of 1-D solutions embrace
the 3-D solution perfectly. In addition, the approximate oÄt-curve supplied by the
1-D model with a geometric spatial mean, Big, is moderately lower than the
accurate heat transfer curve based on the 3-D model. It may be inferred that the
curve of the 1-D model is shifted upwards, providing a qualitative lower-
bounded, statistical estimate. Here, the disparity between the approximate heat
transfer of the 1-D model with an arithmetic spatial mean, Bia, and the precise
heat transfer of the 3-D model is small. As the number of fins in the array was
increased gradually to 8, and later to 12, an approximate symmetrical behavior
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was noticed and the oÄt-curves based on the 3-D model were equidistant from the
two simplified 1-D bounding curves based on Bia and Big for brevity. Contrary
to the case for N = 4, the opposite pattern is in evidence for a dense array of N =
16 fins. This tendency demonstrates that the heat transfer curve of the 1-D
model is shifted downwards, supplying a qualitative upper-bounded statistical
estimate. Besides, it may be observed that the discrepancy between the
approximate heat transfer of the 1-D model with an arithmetic spatial-mean,
Bia, and the precise heat transfer of the 3-D accurate model is again small. The

Figure 5.
Comparison of the axial

variation of the total
heat transfer for N = 16
obtained by the exact 3-
D distributed model and

the arithmetic mean of
the two bounding 1-D

lumped models (DM:
distributed model and

LM: lumped model)

Figure 4.
Comparison of the axial

variation of the total
heat transfer for N = 4

obtained by the exact 3-
D distributed model and

the arithmetic mean of
the two bounding 1-D

lumped models
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features displayed in Figures 4 and 5 are worthy of note because they put in
unequivocal evidence an intrinsic sweeping behavior of the 1-D oÄt-curves that
do respond to the number of fins in the array.

Taking advantage of the fact that the two types of 1-D algebraic solutions
bracketed the accurate 3-D finite-difference solution, a new predictive method
may be proposed. It involves the straightforward use of an arithmetic mean of
the two 1-D bounding solutions of the heat transfer accounting for Bia and Big,
respectively. This leads to the simple formula


t � 1

2
�
t�Bia� � 
t�Big�� �31�

whose repercussions have been explored in this subsection. It is expected that
the new approach can match the complete 3-D solution in a better way and
provide the best estimation of oÄt. To accomplish this, the arithmetic spatial
means for the heat transfer have been computed varying the dimensionless
length, L0, for N = 4 and 16 fins and are plotted in Figures 4 and 5 as well. Here,
from an overall appraisal of these two figures, it is seen that none of the new 1-
D heat transfer predictions represented by filled rhombics are very far from
those given by the precise 3-D heat transfer results.

A qualitative comparison of the heat transfer deviations at several axial
positions has also been carried out using the two diametrically opposed
methods. First, for N = 4, the oÄt-deviations are insignificant always within a
margin of 0.04 units in the entire heat exchange region. Conversely, for N = 16,
the oÄt-deviations are practically nullified, and never exceeded 0.01 units in the
entire heat exchange region.

As a final matter, attention has been turned to the thermal design of finned
tubes for heat exchange devices. The simplistic 1-D temperature distributions
(synonymous with the total heat transfer) can be computed by hand because
the operations involve simple algebra. Thus, these bounding results can be
used later to calculate the arithmetic mean of the two 1-D heat transfer
solutions and, if necessary, may be fitted with available curve fit software.
Consequently, the resulting correlation equation is of the type


ÿ1
t � a� b

L0
�32�

where a and b are constants. This equation may be valuable to thermal design
engineers who need to expedite the calculations. Otherwise, precise calculations
may necessitate the use of the 3-D numerically-determined results generated by
the computer and a companion set of graphs.

In sum, the central implication of the approximate bounding results, via a
plain 1-D lumped model, is that it may safely replace the numerical results
provided by the 3-D distributed model for this kind of finned-tube, forced
convection problem.
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Conclusions
It may be concluded that a 3-D partial differential energy equation with
variable coefficients and a boundary condition of third kind possessing a
marked periodicity may be safely converted into a simple 1-D ordinary
differential equation of first order. The bounding treatment of the dominant
boundary condition was successfully handled with appropriate statistical
spatial means. Statistical spatial means seem to provide a very useful tool in a
variety of situations in engineering analysis, and their applications are quite
underdeveloped. We hope that this introduction to the topic of statistical heat
transfer in finned tubes has stimulated the reader's interest.
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Appendix A. Theoretical distributions of the axial-mean Nusselt numbers which
are required for the models
1. In-tube flows with prescribed temperature at the wall
1a. Fully developed laminar velocity for water and oil. For laminar flow (Rei < 2000) and
developing temperature, the local Nusselt number, Nui(Z), may be computed from the correlation
equation developed by Churchill and Ozoe (1973):

Nui�Z� � 5:357 1� 61:752

Z

� �ÿ8=9
" #3=8

ÿ1:7 �A1�

The axial-mean Nusselt number, Nui(L), may be obtained from the correlation equation proposed
by Hausen (1943):

Nui�L� � 3:657�
0:067 DiReiPri

L

� �
1 � 0:04 DireiPri

L

� �2=3
�A2�

1b) Developing laminar velocity for any fluid. For this general flow condition (Rei � 2000), Kays
and Crawford (1993) have recommended that for internal fluids with Prandtl numbers greater
than five (e.g. water and oil), the laminar velocity profiles develop so much faster than the
temperature profile that the assumption of fully developed laminar velocity at the tube entrance
seems to be reasonable and thereby introduces little error. Hence, Equation (A1) and (A2) apply
equally well for situations of simultaneous development of velocity and temperature for water
and oil.

For the specific case of air, the simultaneous laminar flow and temperature may be modelled
by the correlation equation for the axial-mean Nusselt number, Nui(�L) recommended by Stein
(1988):

Nui�L� � 3:66 Pri � 0:576

Pri � 0:1

� �3

��1:62�3 DiReiPri

L

� �
�
�0:664�3 Pri

DiRei

L

� �3=2

1� 0:204

Pr
1=2

i

264
375

1=3

�A3�

1c) Fully developed turbulent velocity of any fluid. For fully developed turbulent velocity (2000 <
Rei < 106) and developing temperature, the axial-mean Nusselt number, Nui, may be determined
from the two correlation equations constructed by Gnielinski (1976):
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Nui � 0:0214 �Re0:8
i ÿ 100� Pr0:4

i 1� D

L

� �2=3
" #

�A4a�

for gases (0.6 < Pr < 1.5) and

Nui � 0:012 �Re0:87
i ÿ 280� Pr0:4

i 1� D

L

� �2=3
" #

�A4b�

for liquids (1.5 < Pr < 500), respectively.

1d) Influence of temperature-dependent properties. There are simple correction factors used in

engineering practice that adjust the constant-property correlation equations to accommodate the

effects of property variation of fluids.

For liquids, the correction factor is

Nui;vp

Nui

� �b

�w

� �n

�A5�

where IÁb and IÁw are evaluated at their respective temperatures Tb and Tw.

For gases, the correction factor is

Nui;vp

Nui

� Tb

Tw

� �n

�A6�

where Tb and Tw are the absolute mean bulk and wall temperature, respectively. In both

equations, Nui,vp designate variable properties, whereas Nui represent constant properties.

Numerical values of n are listed in Table AI.

Appendix B. Statistical analysis of the spatial means of the angular variation of the
Biot numbers

The local external convective coefficient, he(h), shown in Figure 1b may be modeled as a periodic

variation of low values of the external convective coefficient, hu, for the unfinned portion, xu, and

high values of the external convective coefficient, hf, for the finned portion, xf, respectively. The

resulting strong discontinuous change may be recast in dimensionless form as two different Biot

numbers: Biu and Bif belonging to their respective unfinned and finned segments, Xu and Xf.

For the sake of generality, let us assume the existence of a uniform distribution of he(h) in an

unfinned- finned interval between X = 0 and X = Xu + Xf, where the coordinate X is measured

along the tube circumference. Statistical Theory (see Hardy et al. (1967)) classifies three different

spatial-means. In the context of this study, the three notable spatial-mean Biot numbers, Bi, are:

Table AI.
Values of the exponent

n in equations (A5) and
(A6)

Type of flow Fluid Condition n Reference

Laminar Liquid Cooling/heating 0.14 Seider and Tate (1936)
Laminar Gas Cooling/heating 0 Kays and Crawford (1993)
Turbulent Liquid Cooling 0.25 Petukhov (1970)
Turbulent Liquid Heating 0.11 Petukhov (1970)
Turbulent Gas Cooling 0 Kays and Crawford (1993)
Turbulent Gas Heating 0.5 Kays and Crawford (1993)
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a) the arithmetic spatial-mean:

Bia � XuBiu � Xf Bif
Xu � Xf

�B1�

b) the geometric spatial-mean:

Big � Bixu
u Bi

xf

f

� � 1
Xu�Xf �B2�

and

c) the harmonic spatial-mean:

Bih � 1

Xu � Xf

Xu

Biu
� Xf

Bif

� �� �ÿ1

�B3�

respectively.

Further, it can also be demonstrated that these three spatial means are quantitatively related by
the inequalities

Bia < Big < Bih �B4�
In essence, the goodness of the spatial-mean Biot numbers may serve as a criterion for the
correctness of the bounding procedure for the real distributions of the mean bulk temperature
and the total heat transfer during the course of the adoption of a 2-D distributed/lumped hybrid
model and a 1-D lumped model.


